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A theoretical analysis is presented for the process of heat and mass
transfer in the case of a liquid evaporating from a capillary-porous
body into an approaching gas stream. The method of the experimen-
tal investigation into this process is described, The excellent agree-
ment between the experimental and theoretical data makes it possible
to use the resulting quantitative relationships to calculate the heat-
transfer coefficients in the case of intermittent cooling.

The problems of convective heat and mass transfer
between a body and the ambient medium are usually
solved on the basis of concepts relating to the boun-
dary layer, for which a system of transport equations
is derived. It is assumed in this case that the heat
transfer between the surface of thebody and the medium
is described by the so~called law of convection accord-
ing to which the density of the heat flow ¢ is directly
proportional to the temperature head At (At = tyoq =
— tgur). The proportionality factor is the heat-transfer
coefficient . The body-surface temperature t in this
case is defined as a function of the coordinate x of the
body in the direction of the gas flow (t; =f(x)), With
this method of calculation, the heat-transfer coeffi-
cient aq is independent of the thermophysical charac-
teristics of the body and of its dimensions,

A similar method is used also for the calculation of
the mass transfer; here, analogously, a mass-transfer
coefficient oy, is introduced, and this quantity repre-
sents the proportionality factor between the density of
the mass flow j and the concentration difference Aw or
the proportional-pressure difference AP,

As demonstrated by research [1], this method is
fundamentally incorrect and may be employed as a
calculational procedure only for certain special cases
of pure heat transfer, A rigorous statement of the
problem dealing with the transfer of heat between a
body and the ambient medium must be formulated as a
conjugacy problem (temperatures and heat flows are
equal at the boundary of separation between the solid
and the medium) in which the transfer of heat within
the body is directly associated with the transfer of -
heat and mass within the boundary layer at the surface
of the body.

The initial attempt to use this approach in solving
the problem of the transfer of heat between a moist
body and the flow of a heated gas is described in [2],
Here it is quite natural that a number of simplifications
and assumptions were adopted. It was assumed that

the evaporation of the liquid takes place within the body,

at a surface removed from the surface of the body by a
distance ¢, The surface evaporation temperature {¢ is

assumed to be a constant and equal to the temperature

of the wet-bulb thermometer (te = typ). However, this

last restriction does not apply to the constant quan-

tity (tgyr = const). It is then assumed that the linear
Vglocfties of motion in the boundary layer are constant
(wy = const = 5/8wmed; ."_VY = const). This assumption
was necessary to solve the differential equation of heat
transfer for the boundary layer. As a result, it was
established that the relative coefficient of heat trans-
fer or, more exactly, the Nusselt number, is a func-
tion not only of the hydrodynamics of the flow (the Re
number) and its physical characteristics (the Pr num-
ber), but also of the thermophysical properties of the
body (the coefficient of thermal conductivity Agq) of
the body) and of the location of the evaporation sur-
face £. These characteristics of the body are incor-
porated into the generalized argument X:

Hx AmX

V Pe, Ag

The local Nusselt number Nux is thus a function of
three numbers:

K:

Pe;05, (1)

Nux = f(R‘exv pr7 K) (2)

This is the basic difference in the solution of the prob-
lem of heat transfer between a body and the ambient
medium, as opposed to the generally accepted calcula-
tional procedure based on the law of convective heat
transfer, Despite the number of simplifications, this
method of solution yields fairly accurate results,

Let us dwell on this in somewhat greater detail.
The differential equation of transfer in the boundary
layer for laminar streamlining of a flat plate has the
form

ot (x, y) ot (x, y) %t (x,y)
x = , 3
O ox i dy ¢ ay* ®

where wy and Wy are components of the velocity of
motion along and across the flow, respectively.

For the calculational procedure we will assume
that wy = wy = const and Wy = "T’y = const, in which
case, as demonstrated in [2], we will have

Nu, = i T
A
1 — B\? T
1
><Berfc(-—2— Bﬂ R (4)

where Rey = wxx/v is the local Reynolds number for
the averaged flow velocity wx in the boundary layer;
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Fig, 1. Profiles of longitudinal wx(a) and transversal wy(b) velocity when flat plate
is in laminar flow.

Table 1
The Quantity N(B) for Various Values of B

B N (B) B N (B) B N (B) B N (B)
0 1 0.30 0.7565 0.06 0.9478 0.80 0.4469
0.01 0.9912 0.40 0.6852 0.08 0.9307 1.00 0.3538
0.02 0.9825 0.50 0.6188 0.10 0.9139 |- 2.00 0.0891
0.04 0.9653 0.60 0.5570 0.20 0.8327 5.00 0.0001

Table 2

Theoretical Values of N as a Function of K and B

N (K, B)
L=
K K B=0 | B=0.04 | B=0.08 | B=02 | B=04 | B=06 | B=1
0 1 1 1 1 1 1 1

10 0.1 1.06 1.06 1.06 1.075 1.08 1.11 1.13
8 0.125 1.08 1.08 1.08 1.10 1.1 1.13 1.175

6 0.166 1.103 1.10 1.11 1.15 1.15 1.18 1,24
5 0.200 1.104 1.1 111 1.12 1.16 1.18 1.29
4 0.250 1.24 1111 1.12 1.152 1.18 1.20 1.30

3 0.333 1.16 1.145 1.17 1.19 1.23 1.27 1.40

2 0.500 1.22 1.20 1.22 1.21 1,33 1.38 1.57
45 0.68 1.26 1.25 1.28 1.32 — 1.49 1.72
1 1.0 1.32 1.325 1.35 1.39 1.50 1.61 1,94
0.8 1.25 1.36 1.355 1.39 1.45 1.56 1,69 2.05
0.6 1,66 1.40 1.40 1.43 1.50 1.66 1.76 2.22
0.4 2.5 1.44 1.44 1.48 1.56 1.70 1.88 2.40
0.2 5.0 1.50 1,561 1,55 1.63 1.80 2.00 2.62
0.1 10 1.53 1.54 1.58 1,69 1.86 2.09 2.76
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B= wy/wx(Rex'o‘5 is a dimensionless parameter

characterizing the transfer in the transverse direction,
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Fig. 2. N(K,B) versus 1/K.

If we adopt the parabolic law wy(y) for the velocity
distribution along the coordinate y, we have wy =
= (5/8)Wmed, Where wyned is the velocity in the core
of the flow. The average value of wy is determined
from Fig. 1b from the magnitude of the parameter
(y/x)Re. For the average value of wg/Wmed = 5/8 the
quantity 5*(Wmed/Vx)1/2 = 1,73 (see Fig. 1a). This
average value of y(wmed/vx)1 2 = 1.73 corresponds to
(wY/wa)(wg,x/u)I/2 = 0.2 (see Fig. 1b). Hence we have

Oy /R Pre Doy /Wmeaty /8 p
=L V Re,Pr wmed‘/ . = Pr

=0.2:1.26-0.838 = 0.21. (5)
Here it was assumed that Pr = 0.7, which corresponds
to the values of the Prandtl numbers for air. When
'; B = 0.21, the expression in the brackets of formula (4)
is equal to 0.84. Consequently, for air (Pr = 0.7)

Ni, = -~} Prv Re, 084=031 VRe,,  (6)
Vi ‘

which is virtually coincident with the empirical for-
mula for the local Nusselt number Nuy in the case of
laminar streamlining of a flat plate

Nu, =030} Re, . (7)

It follows from formula (4) that with an increase in
the parameter B the Nusselt number diminishes, We
will denote the expression in brackets by N(B):

N - NV E

vV PrRe,
= [exp(—%ﬁ) — —;-/?Berfc (—;— B)] . (8)

The function N(B) is shown for various values in Table
1, We see from the table that when B = 5 the quantity
N(B) iIs very small and, consequently, the Nuy number
is virtually equal to zero., Formula (4) will also be
valid in the case of injection into the boundary layer
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through the porous surface of the body. In this case,
the parameter B is given by {3]

B=V PrRe, Z:)_ [Z@%— w, (—c—liﬂ : (9)

a /i

X

where wg is the linear velocity of injection at the body
surface; c; and ¢, are, respectively, the specific heat
capacities of the flow and of the injected gas.

With an increase in the injection velocity wg we thus
have an increase in the parameter B, as a result of
which the Nusselt number diminishes in accordance
with formula (4). This is explained by the thickening
of the boundary layer, resulting in a change in the
temperature profile in the boundary layer. Some inves-
tigators use formula (4) to calculate the heat transfer
in the evaporation of a liquid from porous bodies, as-
suming the process of intermittant evaporation to be
analogous to the process of gas injection intothe bound-
ary layer. As demonstrated by the calculations, with
an evaporation intensity lower than 25 kg/m?- hr, the
linear rate of evaporation is independent and has no
effect on the magnitude of the parameter B [3]. More-
over, it should be borne in mind that the linear rate
of evaporation (in terms of its physical significance)
is not the velocity of molar motion, but characterizes
the diffusion of the vapor in the boundary layer. The
injection velocity wg and the linear rate of evaporation
are therefore quantities which are different in their
physical nature, although expressed in the same units,

The quantitative relationships governing the heat
and mass transfer in the case of injection into the
boundary layer cannot thus be used to analyze the pro-
cesses of heat and mass transfer for the evaporation
of a liquid from a porous body.

In the case of transpiration cooling, as in the case
of drying, the evaporation of the liquid, in the majority
of cases does not take place at the surface, but at
some depth £ from the body surface. In the evapora-
tion zone (0, —£) we have evaporation of the liquid,
with the moisture being transported primarily in the
form of vapor. Unlike reference [2], the temperature
profile in the evaporation zone is therefore assumed in
the form of the relationship

L% y) =te +[(x) {1 —exp[— D (y + B}, (10)

where f(x) is a function by means of which we take into
consideration the variation in temperature along the
coordinate x; D is a constant; t, is the evaporation
temperature,

The boundary conditions have the form

280 g f () Dexp2t (1)
Oy
or, using formula (10),
3 00
Oy
. D
='_}"sol[t(x’ 0)'_te] exng——-l s (12)
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Fig. 3. Profiles of temperature distribution in quartz sand 1, 2, 3, 4, 5, 6, and 7) thickness of dry inter-
layer equal t0 0, 2, 3, 4, 5, 6 and 8 mm, respectively ; a) porosity 35 percent; b) porosity 36 percent;
c) 38 percent; d) 42 percent.
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Table 3

Experimental Values of K and N(K, B) for Sands Exhibiting Various
Porosities (B .= 0.2)

£.10° H K - N (K, B) N (o, B) N&K B
K , ' N (@, B)
Porosity 42 %
8 624 0.509 1.965 1.2745 0.8327 1.53
6 835 0.681 1.468 1.2353 1.48
5 1000 0.816 1.225 1.2051 1.447
4 1240 1.0l 0.99 1.1695 1.4
2 3760 3.07 0.326 0.9948 1.138
Porosity 38 %,
8 444 25 0.363 2.75 1.3003 0.8327 1.56
6 587.9 0.480 2.08 1.2811 1.538
5 721.9 0.589 1.697 1.2488 ‘ 1.499
4 906.02 0.739 1.353 1.2252 1.47
2 1815.6 1.482 0.675 1.1011 ] 1.322
Porosity 36 9,
8 677.3 0.553 1.808 1.2633 0.8327 1.516
6 914.6 0.746 1, 34 1.2211 1.465
5 1076.05 | 0.878 1.138 1.19025 1.429
4 1335.5 1.09 0.917 1.1694 1.404
2 2781.1 2.27 0. 44 1.0332 1.24
Porosity 35 %
8 771.2 0.629 1.589 1.24882 0.8327 1.499
6 1010.6 0.825 1.212 1.2058 1.447
5 1199.7 0,979 1,021 1.1695 1.404
4 1488.9 1.215 0.823 1.1308 1.357
2 2872.3 2.344 10.427 1.0281 1.234
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where \gp] is the thermal conductivity of the body in
the evaporation zone, Boundary condition (2) is thus
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Fig. 4. Profile of velocity distribu-

tion wx(y) in air boundary layer: 1)

experimental points; 2) theoretical
values.

similar to the condition cited in reference [2], but
the quantity H in this case is given by
A D

H= ol ____— (13)
A [expDE—1j

The remaining boundary conditions remain as before,
i.e., when
t(x, —E) =1, — const.

y=—E (14)

For the given boundary conditions we obtain a solution
for the differential equation (3) that is analogous to the
solution given in [2].

Consequently, the local Nusselt number will be
given by

N, X 0,8 _
tmea—1(0,%) Oy
- L vV Pe N (K, B), (15)
V n

where N(K, B) is a function which is given by

N(K,B):[@(K,B)——;V_{Berfc% B} x

=)
+%TB<— erfc—; ] (16)
1 B
By =[1—-L 2 |x
v(k,5) = K)
xl/?c_Kexp(K2~—BK)erfc<K——;— B}. amn
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The quantity K characterizes the influence of the pene~
tration of the evaporation zone, It is given by

Ke—MD vy (18)
A(expDE—1)

The curves of N'(K, B) were platted for various values
of B from formula (16) (see Fig. 2 and Table 2). We
see from Fig, 2 that with a reduction in 1/K the quan-
tity N'(K, B) diminishes, i.e,, with greater penetration
of the evaporation surface the Nuy number increases.
The greater the value of Bthe more intensive the reduc-
tion in Nug. The analytically derived relationships
have subsequently been confirmed by experiment,

The experimental investigation was carried out in
a continuous-action wind tunnel with an enclosed work-
ing section exhibiting the following airstream para-
meters: velocity, 5 m/sec; temperature, 353° K; hu-
midity, 5%. The model—abox made of plastic and filled
with quartz sand—was positioned within the working
section of the tunnel.

During the course of the experiment we studied the
effect of a dry layer of sand on the heat-transfer coef-
ficient (the thickness of the layer was varied as fol-
lows: 0, 2, 4, 5, 6, and 8 mm, with various dispersion
ratios—quartz-sand porosities of 35, 36, 38, and 42%.

When we use natural material we cannot expect a
completely flat rectilinear boundary of phase transi-
tion. This is possible only through resort to articicial.
means. In particular, in our experiments the drylayer

/5—4

&)

x [ a
N ® 3 b
/ L A ——— ¢
o —— d

0 ’ 2 Yk

Fig. 5. Experimental data compared

to theoretical curve: a) porosity

42 percent; b) 38 percent; c¢) 36
percent; d) 35 percent,

was achieved by applying a very fine hydrophobic film
to the sand grains., The sand was poured into the rec-
tangular box. Water was fed into the box from below
through a connecting tube. To ensure uniform entry
of the water, an additional supporting grid was installed
inside the box, and the sand was poured directly onto
this grid. The space between the bottom of the box and
the grid was filled with water which was uniformly
drawn up by the sand until it reached the top layer
which had been treated with the hydrophobie film, To
avoid "parasite" unanticipated heat losses through the
side walls, the latter were carefully insulated with a
layer of foam plastic, In addition, the box was fitted
out with a thermostating jacket in which water was
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continuously circulated at a specific temperature. The
bottom wall of the measuring unit was made of massive
textolite. A rectangular hole was cut into its center

to house a box exhibiting dimensions of 260 x 140 mm.
To produce a hydrodynamic pattern similar to the one
prevailing under conditions of the external stream-
lining of a plate, provisionwas made for the evacuation
of air in front of the box. The model was mounted in

a positioning device and set flush with the bottom wall
of the working section of the tunnel. This procedure
eliminated the distorting effect of tuanel-wall vibra-
tions,

VTK-500 scales were used to measure the amount
of moisture being vaporized during the course of the
experiment, and in addition we measured the tempera~
ture of the sand, the flow, the walls of the box, and
of the water entering the box. Particular attention was
devoted to the accuracy with which the temperature
fields were measured in the sand. For this purpose,
we fabricated a 17-junction differential thermocouple
made of copper-constantan wire; the junction diameter

" was 0.15—0.2 mm. The junctions of the differential
thermocouple were positioned along the vertical,
with variable gpace (0.4 mm near the outside sur-
face of the sand and up to 1 mm at some distance
from the surface). We used a PMS-48 potentiometer
to measure the thermal emf of the thermocouples, and
this device was fitted out with a sensitive M-17-1 gal-
vanometer. To investigate the hydrodynamic boundary
layer we used a miniaturized Pitot tube with an effec-
tive center height of 0.15 mm, which was moved in
the vertical plane by means of a miniaturized position-
ing device,

As a result of this experiment we were able to plot
the temperature profiles in the sand and the velocity
distribution in the boundary layer. In addition, we
measured the quantity of evaporated moisture, Figure
3 shows the curves for the temperature distribution
in dry and moist sand (moisture content, 100%)., We
see from these graphs that all of the temperature-
distribution curves exhibit three characteristic seg-
ments,

The first segment is the penetration zone (0 >y >
> —£). It is in this segment that the heat is trans-
mitted by conduction (natural convection and radiation
are neglected). The heat is expended on phase conver-
sion, and a fraction of the heat is spent on heating
the sand. It is in this segment that the temperature
profile is presented in the form of a curve, If there
were no evaporation, the temperature distribution
would be linear in nature. However, the presence of
mass flow distorts the temperature profile; this seg-
ment is well-approximated by formula (10).

The second segment is the transition zone. It is
here that we have a qualitative change in the pattern,
since it is in this segment that liguid is evaporated, In
this connection, it should be borne in mind that the
moisture is not evaporated on a plane which is parallel
to the outside contour of the body, but at some layer
of finite dimensions, The phenomenon of volume evapora-
tion was also noted in {4], and it was found here that
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the intensive evaporation which occurs in drying takes -
place in a very thin layer at the boundary of phase
separation, Consequently, we must assume that te =
=-const in the solution, this being the average tempera~
ture through the thickness of the evaporation zone.

The third segment is the zone of moist sand (¢ =
= 100%). There is no evaporation; however, a portion
of the heat is spent on heating the sand. The heat is
transmitted by the conduction of the skeleton, so that
the temperature profile in this segment of the curves
is shown in the form of a straight line, This fact indi~
cates that the thickness and structural characteristics
of thedry interlayer of the porousbody exert consider-
able influence on the intensity of mass transfer during
the course of evaporation from the capillary-porous
body. If the intensity of evaporation were independent
of the structural characteristics of the topmost dry
layer, it might be possible to set up adiabatic condi-
tions and to eliminate the heating of the wet sand. The
dry interlayer forms a major thermal resistancewhich
prevents a removal of moisture, such that all of the
heat not spent on phase conversion would be removed

. by the vapor into the flow. In actual practice we find

that adiabatic evaporation is a special case which can
be achieved only within thin interlayers or by choosing
a particular porosity for the interlayer.

Analysis of the experimental curves shows that
with increasing depth for the phase-transition zone
the curves move higher and higher, retaining all the
features of their shape. As the dry interlayer thickens,
there is an increase in the hydraulic resistance of the
porous structure. At the same time, the pressure
within the porous material increases and, consequently,
the evaporation temperature of the moisture rises. For
small penetrations the evaporation temperature for
the surface is therefore independent of the magnitude
of penetration and it is equal throughout to the tempera~
ture of the wet-bulb thermometer, which is a function
of the external conditions. With increasing thickness
for the dry interlayer, the evaporation temperature
rises. Consequently, we have to introduce boundary
conditions into the solution to take into consideration
the variation in temperature as a function of the thick-
ness &,

To determine the dimensionless complex B charac-
terizing the transfer of heat in the lateral direction
we plotted the velocity distribution profile of wx(y) in
the boundary layer (Fig. 4). The excellent agreement
between the results of the theoretical Blasius solution
for a plate of infinite length (I ~ «) with the experi-
mentally derived data suggests the possibility of using
the "pure" heat-transfer data—uncomplicated by mass
transfer—for the calculational scheme. The linear
rate of evaporation (the magnitude of the Stefan flow)
is determined from the formula.

DIZ me — }sux; (19)

where jgur is the mass flow rate of the evaporating
moisture; p, is the vapor concentration; p is the den-
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sity of the moist air; py, is the relative concentration
of the vapor; and Dy, is the coefficient of vapor diffu-
sion in the air, Formula (18) was used to calculate

the value of K for sands of various porosities as a func-
tion of the thickness of the dry interlayer (Table 3),
We see from Table 3 that the value of K diminishes as
the thickness of the dry interlayer increases. It is
difficult to establish a clear quantitative relationship
between K and the porosity of the sand, since the sand
is a natural material which involves various particle
shapes. During the course of the experiment, the sands
were chosen by screening the particle dimensions.
However, the porosity of disperse materials is deter-
mined primarily by the manner in which the particles
are packed, and depending on the manner in which

the sand was poured, the porosity varied within a de-
fined range from experiment to experiment, However,
it is possible to achieve a qualitative evalnation: with
an increase in the porosity of the sand, the value of

K diminishes. This is explained by the change in the
effective thermal conduectivity of the porous dry inter-
layer (the thermal conductivity of the skeleton increases
as its porosity diminishes, since a greater portion of
the porous body is occupied by its skeleton in this case
—the skeleton exhibiting a considerably greater coeffi-
cient of thermal conductivity than the pore space filled
with the water vapor).

Knowing the values of K = f(¢, sur) and B (B = 0.2),
we can find the values of N(K, B). Figure 5 shows the
theoretical curve of N = f(K) for B = 0.2 and the ex~
perimental points for quartz sand with various poros-
ities (85, 36, 38,42%).

We can seefrom these graphsthat the experimental
data line up rather well along the theoretical curve.
Only the very thin interlayers (£ = 2 mm) represent
an exception; here we note a certain deviation from
the theoretical data, which can be explained by the
difficulties encountered in measuring temperatures in
the very thin interlayers. Consequently, the experi-
ment confirms the proposed theoretical solution,

In conclusion, let us dwell on the work of Morgan
and Jerazunis {5], who investigated the effect of heat
and mass transfer, These authors attempted to analyze
the heat and mass transfer occurring on vaporation of
a liquid from porous bodies (evaporation cooling) as
well as during the process of drying. First of all, it
should be noted that the process of drying moist bodies
is a typical nonsteady process of heat and mass trans-
fer, while the process of evaporation cooling is a
steady-state process, For nonsteady heat- and mass-
transfer processes, the quantitative relationships
governing steady heat and mass transfer are not suit-
able. In particular, the so-called formula of convec~
tive heat transfer (g = oAt) cannot be used, since the
heat-transfer coefficient « is a function of both time
and of the thermophysical characteristics of the body.
Equally unsuitable is the Dalton formula for mass
transfer during a period of a declining drying rate.

So far as the analysis of heat- and mass-transfer
processes is concerned in the event of transpiration
cooling, the original relationships given by these au-
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thors exhibit a fundamental error in our opinion. Ini-
tially the authors assume that the intensity of the heat
and mass transfer on evaporation of the liquid from
the porous body is described by the relationshipsfrom
the classical theory of heat and mags transfer inwhich
the effects of the penetration of the evaporation sur-
face into the body is not taken into consideration. In
particular, the authors base their calculations on re-
lationships according to which the heat- and mass-
transfer coefficients are determined from the gener-
ally accepted formulas of external heat and mass
transfer:

Nu, = A, Re"Pr¢, Nu,,, = 4, Re"Prf,, (20)

where A, and Ay are constants, and p and n are expo-
nents.

However, as was demonstrated earlier, these for-
mulas lose validity when the evaporation zone is set
deeper into the body,

In addition, they adopted an unjustified assumption
to the effect thatthe heat- and mass~transfer coeffi-
cients vary as functions the coordinate x and of thick-
ness £ in accordance with the formula

o(n8) oy [, _ (_E_)V ]‘B (21)
Ug Gy X ’

where y and g8 are constants; o, and ap, are, res-
pectively, the coefficients of heat- and mass-transfer
without penetration of the evaporation surface. On the
basis of these formulas, the authors carry out the
calculation and, quite naturally, attain results exceed-
ing our data by a factor of three. The relationsghip
between the heat- and mass-~transfer coefficients and
the Re and Pr numbers--as well as the coordinates
x and ¢-—must be derived from the solution of the con-
jugacy problem rather than being assumed in advance
in the form of empirical formulas. Thus the study
carried out in [5] once again confirms the inapplica-
bility of conventional methods of calculating heat trans-
fer in connection with the problem of transpiration
cooling.

The basic conclusion of our paper is the fact that
in order to determine both the quantitative and quali-
tative pattern of the effect exerted by mass transfer
on heat transfer, we have to take into consideration
the hydrodynamic conditions of body streamlining (ex-
ternal conditions) and the properties of the capillary-
porous body (internal conditions). Consequently, the
transfer of heat and mass between capillary-porous
bodies and the ambient medium is a single interrelated
heat- and mass~-transfer process which takes place in
the boundary layer of the body and in the boundary
layer of the medium,

NOTATION

t is the temperature; ¢ is the specific heat flux;
aq is the heat transfer coefficient; o is the mass
transfer coefficient; » is the thermal conductivity;

a is the thermal diffusivity; w is the velocity; ¢ is the
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humidity; o is the concentration; j is the mass flow
density; P is the pressure; ¢ is the distance; x and y
are coordinates; c is the specific heat capacity;

6* is the conventional depth of boundary layer. Simi-
larity criteria: Nuy is the local Nusselt number; Pey
is the local Peclet number; Pe, is the local Peclet
number based on mean integral velocity in boundary
layer; Pr is the Prandtl number. Subscripts: med is
the ambient medium (humid air), w(wet bulb) is the
state of adiabatic saturation; sur is the surface; sol
is the solid; x is the local value which depends on the
coordinate; e is the evaporation surface,
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